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We propose, as a generalization of an idea of Ruelle's to describe turbulent fluid 
flow, a chaotic hypothesis for reversible dissipative many-particle systems in 
nonequilibrium stationary states in general. This implies an extension of the 
zeroth law of thermodynamics to nonequilibrium states and it leads to the iden- 
tification of a unique distribution/1 describing the asymptotic properties of the 
time evolution of the system for initial data randomly chosen with respect to a 
uniform distribution on phase space. For conservative systems in thermal equi- 
librium the chaotic hypothesis implies the ergodic hypothesis. We outline a 
procedure to obtain the distribution/.t: it leads to a new unifying point of view 
for the phase space behavior of dissipative and conservative systems. The 
chaotic hypothesis is confirmed in a nontrivial, parameter-free, way by a recent 
computer experiment on the entropy production fluctuations in a shearing fluid 
far from equilibrium. Similar applications to other models are proposed, in 
particular to a model for the Kolmogorov-Obuchov theory for turbulent flow. 

KEY WORDS:  Chaos, Ruelle principle; large deviations; nonequilibrium; 
SRB distribution; stationary state. 

1. I N T R O D U C T I O N  

In a previous paper Cl) we proposed the use of Ruelle's idea (discussed in 
Section 2) to obtain the probability distribution for the statistics of tur- 
bulent flows in hydrodynamics, as a basis for the study of many particle 
statistical mechanical systems in nonequilibrium stationary states in 
general. We did so, by providing a concrete procedure of how to obtain the 
necessary probability distribution, now called the Sinai-Ruelle-Bowen 
(SRB) distribution, to compute the statistical properties of the above- 
mentioned systems. The applicability of such a distribution has, so far, only 
been proved with mathematical rigor for very idealized systems, such as 
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Anosov or Axiom A systems, and it would be impossible at present to give 
extensions of the proofs for the many-particle systems of interest here. 
Therefore we proposed to use Ruelle's idea as a heuristic principle to 
obtain the statistical properties of such systems, at least when they are very 
large, i.e. in the thermodynamic limit. This implied that we made a "chaotic 
hypothesis" that the many-particle systems in statistical mechanics are 
essentially chaotic in the sense of Anosov, i.e., they behave, in many respects, 
as i f  they were Anosov systems as far as their properties of physical 
interest are concerned. In other words, we use the SRB distribution 
obtained from the strong assumption of chaoticity in the Anosov sense in 
a heuristic way to compute statistical mechanical properties of our system 
and assume that the corrections due to the possible nonvalidity of the 
strong chaoticity assumption become negligible for large systems. 

The position that we take here is very similar to that usually taken 
with respect to the so-called ergodic hypothesis, which has been proven 
only for very special particle systems, and only very recently for systems 
with more than one particle. (2) Yet, when used as a principle, it has led to 
all known results of equilibrium statistical mechanics, beginning with its 
connection with thermodynamics. It would seem therefore inappropriate, in 
fact very unfortunate, if the application of the ergodic hypothesis would 
have had to wait till it had been proved valid for the many-particle 
statistical mechanical systems in thermal equilibrium of physical interest. 
Very recently a version of what we shall call the chaotic hypothesis (see 
Section2), has been rigorously proved for a single (moving) particle 
system held in a nonequilibrium stationary state and a number of detailed 
consequences have been derived, which agree with experiment. TM 

Here we will give a number of possible many particle systems to which 
the chaotic hypothesis and the ensuing SRB distribution could immediately 
be applied. So far, only one of those systems, a shearing thermostatted 
fluid far from equilibrium (see Section 3, model 2), has been investigated 
numerically, viz. the statistics of the fluctuations of the pressure tensor--or  
equivalently of the entropy production rate--in this system have been 
determined numerically and found to be in very good agreement with what 
one obtains by applying the chaotic hypothesis. Although corresponding 
experiments have not been done as yet for the other systems we mention, 
they should provide further checks on the validity of Ruelle's ideas and the 
chaotic hypothesis as proposed here. 

We want to emphasize that the application of the chaotic hypothesis is 
not restricted to stationary states near equilibrium, i.e., to the linear regime 
of small deviations from thermal equilibrium, as the above-mentioned exam- 
ple of a shearing flow shows. The precise limitations of its applicability are 
unknown, however. 
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The way we will present the construction of the SRB distribution from 
the chaotic hypothesis can also be applied to the theory of equilibrium 
states. It leads then to a new picture of the behavior in phase space of 
both equilibrium and stationary nonequilibrium systems, which reveals a 
much closer analogy in their phase space behavior than considered up 
till now. Thus a unification of the conservative behavior in equilibrium 
states and of the dissipative behavior in nonequilibrium stationary states 
emerges. 

In Section 2 we describe some general properties that can help in 
visualizing the general phenomenology of the nonequilibrium systems that 
we consider: the discussion leads then to a formal definition of Ruelle's idea 
and to the precise formulation of the chaotic hypothesis. In Section 3 we 
give a variety of examples of nonequilibrium systems to which the chaotic 
hypothesis can be straightforwardly applied. In Section 4 we discuss from 
a somewhat unusual viewpoint the heuristic ideas behind the hypothesis; 
this leads, in Sections 5 and 6, to an outline and reinterpretation of the 
classical ~4,5,6'71 construction of the appropriate SRB distribution for this 
system, using Markov partitions. In Section 7 we briefly summarize the 
only concrete application so far available, viz. that of a shearing fluid, and 
we discuss our main result, the fluctuation theorem of Section 7 (which 
gives a theoretical interpretation of the experiment). In Section 8 we give a 
discussion and outlook. 

2. THE SRB PICTURE 

For a convenient discussion of the SRB picture of nonequilibrium 
stationary states it is important to discuss the time evolution in discrete 
time, rather than in continuous time. This will be obtained by observing 
the motion when some timing event happens (this is usually done by 
describing the motion through a Poincar6 section). Therefore we fix a 
timing event and envisage performing our observations at every time the 
event happens. This will have the effect of reducing by one unit the initial 
phase space dimension. 

The choice of the timing event is essentially arbitrary: for many- 
particle systems a reasonable choice could be the event in which the pair 
of closest particles (among the N we have) is at a distance r, coming from 
larger distances..We call such an event a "collision" and we use it as our 
timing event. To avoid trivialities r has to be chosen small compared to the 
average interparticle distance, but not too small (i.e., larger than the "core" 
of the interaction). In the case of a continuous fluid flow a natural timing 
event, actually used in many numerical experiments starting with ref. 8, is 
the event in which a given coordinate of the velocity field passes through 
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a prefixed value or assumes a locally maximum value. To make the nomen- 
clature uniform we shall also call such an event a "collision." 

The dynamical systems we consider will be defined now by the phase 
space cs of the "collisions," with dimension 2D, and the time evolution, 
which will be a map S: c#__, cg defined by Sx= S,c~)x, if S, is the con- 
tinuous-time evolution operator solving the equations of motion in the full 
phase space ~-, which in our cases will coincide with a constant "energy 
surface" or will be a manifold in it. In fact, as will be discussed in Section 
3, all models we consider here develop on a manifold ~ on which one or 
more observables have a given value (usually the kinetic or total energy 
and/or a center-of-mass momentum component or other smooth quan- 
tities: the manifold defined by the values of such observables will be what 
we shall call the "energy surface"). Here v(x) is the time interval between 
the collision x e c# and the next one. 

We shall make a statistical study (as is done in equilibrium): this means 
that we shall be interested in the properties of the time evolutions of the 
motions that can be seen by extracting the initial data at random with the 
Liouville distribution on ~-. Since our analysis will be performed on c# rather 
than on ~.~, we shall need the corresponding probability distribution on cg. 
The Liouville distribution / ~ e = c o n s t - J ( H ( p ,  q) - E )  dp dq, when the 
energy is the conserved quantity defining ~-, or the similarly defined distribu- 
tion [e.g. , /J~ = const - ~(Z 17kl 2 - E) in the case of the fluid motion models 
that we consider in Section 3, where the variables 7k are the Fourier com- 
ponents of the velocity field] on the full phase space ~ (energy surface) 
naturally generate a probability distribution/a o on c#: if E is a set on cg, we 
simply set/zo(E) proportional to the Liouville measure of the tube of trajec- 
tory segments in ~ starting at E and with unit length in time, when evolved 
with the motion corresponding to no external forcing fields. We shall still call 
/Jo the "Liouville distribution" (on c#). 

The first point of our analysis is a generalization of the zeroth law of 
thermodynamics to nonequilibrium stationary states. As expressed by 
Uhlenbeck and Ford, c9~ the zeroth law of thermodynamics states that a 
closed conservative mechanical system consisting of a very large number of 
particles will, when initially not in equilibrium, approach equilibrium, where 
all macroscopic variables have reached stationary values. By (asymptotic) 
equilibrium one means here that the time averages have reached values that 
can be computed by a probability distribution on the energy surface. This 
law can be extended to nonequflibrium systems as follows. 

E x t e n d e d  z e r o t h  law. A dynamical system (cs S) describing a 
many-particle system (or a continuum such as a fluid) generates motions 
that admit a statistics/a in the sense that, given any (piecewise smooth) 
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macroscopic observable F defined on the points x of the phase space cg, the 
time average of F exists for all p0-randomly-chosen initial data x and is 
given by 

I T - - I  
l im -~ k~ F ( S k x ) =  f,r ~(dx') F(x') (2.1) 

where/~ is an S-invariant probability distribution on r 

In this form we suppose that it holds for all our models. The notation 
l~(dx) rather than r(x)dx expresses the possible fractal nature of the 
support of the distribution/1, and implies that the probability to find the 
dynamical system in the infinitesimal volume dx around x may not be 
proportional to dx, so that it cannot be written as r(x)dx with r(x) a 
probability density and dx the volume measure on phase space. 

The main point of this paper is to use an idea of Ruelle's as a guiding 
principle to describe nonequilibrium stationary states in general. That is, 
we propose that for such systems there exists a distribution (usually called 
the SRB distribution) describing the asymptotic statistics of motions with 
initial data randomly chosen with respect to a uniform distribution on 
phase space (the Liouville distribution). 

For this to be realistically implemented, we assume that macroscopic 
systems, consisting of very many particles, behave as transitive Anosov 
systems, i.e., are "chaotic" in the sense that each point x in phase space 
admits an unstable and a stable manifold HI.,". and W~, respectively, which 
depend continuously on x, are dense in the phase space cg, and on which 
the expansion and contraction rates, respectively, are everywhere separated 
by a finite gap from 0 (hence no zero Lyapunov exponents occur). 3 We 
propose therefore the following chaotic hypothesis, in addition to the 
extended zeroth law, which in ref. 1 we called Ruelle's principle, as a 
generalization of Ruelle's idea: 

Chaotic hypothesis. A reversible many-particle system in a 
stationary state can be regarded as a transitive Anosov system for the 
purpose of computing the macroscopic properties of the system. 

3 For convenience we recall that an Anosov system (~g, S) is a anooth dynamical system such 
that ever), point x e ~  possesses stable and unstable manifolds W~, W~ which depend 
continuously on x .and  on which S', S-", respectively, contract infinitesimal vectors by a 
factor bounded by Ce -;J' for n/> 0, and likewise for n ~< 0 they expand by a factor bounded 
by C-~e -~'. The constant 2 is therefore such that all Lyapunov exponents satisfy [2jl/> 2 
and hence ). can be called a bound on the Lyapunov spectrum gap. Note that the continuity 
of the W~, W'~ in x implies the transversality of the two manifolds, which therefore form 
everywhere an angle ~(x) bounded away from 0 and 7t. An Anosov system is transitive if 
W~, W~ are dense in ~g for all x. 
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The transitivity is necessary in the theory of Anosov systems t3~ because 
it implies the x independence of the statistics/x; hence in our analysis it is a 
necessary requirement if we want the chaoticity hypothesis to be compatible 
with the zeroth law. We intend to show that this hypothesis, although general, 
leads to concrete verifiable consequences and may be, in this respect, similar 
to the ergodic hypothesis for equilibrium states, but, unlike the ergodic 
hypothesis, admits an extension to nonequilibrium stationary states. 

One could weaken our form of the chaotic hypothesis by replacing 
"Anosov system" with "Axiom A system" and refer to the general theory of 
such systems developed in refs. 5 and 10 (rather than relying on the work 
of Sinai on Anosov systems(a)); one could even attempt to weaken it 
further by trying to make use of the general theory of Pesin of nonsmooth 
hyperbolic systems. ( ~  However, we shall not dwell on such somewhat 
obvious extensions of our ideas, as they do not seem relevant at present. 

Examples of model systems in nonequilibrium stationary states to 
which the chaotic hypothesis is applicable will be given in Section 3. 
Numerical evidence leads us to believe that they seem to share a number 
of properties which we believe to hold also for more general physical 
systems and which we now summarize. Not  all of them are necessary for the 
applications we shall discuss: however, they are very helpful for building an 
intuitive, model-independent picture of the phenomena that we attempt to 
study. When discussing the models from a technical viewpoint we shall 
mention which properties have been experimentally checked and which have 
not (yet) been checked: our applications will only require the following 
properties (A)-(C). 

(A) Dissipation: The phase space volume undergoes a contraction at 
a rate, on the average, equal to D ( a ( x ) }  +, where 2D is the phase space 
cr dimension and a(x) is a model-dependent "rate" per degree of freedom. 
The average here is a time average from time zero to plus infinity and the 
rate is a generalization of the usual entropy production rate (see Section 3 
for motivation of this remark). 

We say that a system is dissipative if the contraction rate per degree 
of freedom, ( a }  § is positive. We shall assume that the models that we 
consider here in nonequilibrium situations are all dissipative. The instan- 
taneous contraction rate a(x) is, however, a fluctuating quantity and we 
note that when we consider in this paper entropy production rates and 
their fluctuations we identify them, mathematically, with phase space 
contraction rates and their fluctuations, respectively. 

(B) Reversibility: There is an isometry, i.e., a metric preserving map i 
in phase space, which is a map i: x ~  ix such that if t ~ x(t) is a solution, 
then i ( x ( - t ) )  is also a solution and furthermore i 2 is the identity. 
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(C) Chaoticity: The above chaotic hypothesis holds and we can treat 
the system (cr S) as a transitive Anosov systems. 

We realize that (C) cannot hold strictly, even in the case of smooth 
interaction potentials (in the presence of hard cores the Anosov property, 
which requires smoothness of the dynamics as a prerequisite, is in fact 
obviously false). What we mean here is that we assume that the system 
behaves as i f  it was a transitive Anosov system and that the errors made 
become negligible (even when there are hard-core collisions) at least in 
large systems. The "long-time tails" in the correlations in macroscopic 
systems are not inconsistent with (C): in fact, although the system may be 
regarded as Anosov for finite N, the size of the maximum time scale (i.e., 
the Lyapunov exponent with minimum absolute value) may be a property 
that is not uniform in the size of the system (e.g., exponential decay of 
correlations): thus, some "predictions" of (C) may become trivial for large 
systems (this is a familiar event since the Poincar6 recurrence discussions). 
The predictions of (C) of interest here are the ones that can, at least, be 
formulated independently of the size of the system. See also comment 6 in 
Section 8. 

In support of (A)-(C) the following two properties (D) and (E) also 
are relevant and appear to hold at least for some of the models that we 
shall treat: 

(D) Pairing of Lyapunov exponents: Half of the 2D Lyapunov 
exponents are >~0 and half are <0. If they are ordered that 0~<2~-~< 
2+~<- - -~<2~  and 0 > 2 i - ~ > 2 2 >  --- > 2  g so that 2max=/~, the 
following pairing rule holds: 

1 
2k - - ( t r )  +, j =  I ..... D (2.2) a7 +47 =~, , 

which has been proved for some special cases where the system is nonrever- 
sible [i.e., or(x) is constant] and the pairs do not necessarily consist of 
exponents with opposite sign; it has been found numerically, in the case of 
model 2 and related models in the form (2.2), in refs. 12 and 13 (where it 
was formulated in the above form). 

On the basis of what is presently known, one can conjecture that even 
if the pairing rule does not hold in the above form it could still hold in the 
form of an inequality: - ( a}  + ~< 2i + + 2 f  ~< 0 (weak pairing rule). 

(E) Smoothness of  the Lyapunov spectrum: The Lyapunov exponents 
become for large N a smooth function of their index. This means that with 
the labeling of the exponents as in (D) above, if one draws a graph of 
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x = j / D ~  2 f  =fN(j/D), then in the "thermodynamic limit" ( N ~  ~ with 
constant density for particle systems; in the case of fluid systems the role 
of N will be taken by the Reynolds number) fN(x) ~ _ ~  fo~(x), where 
f~(x)  is a smooth, increasing function of x e [0, 1 ]. 

Evidence for the generality of such a property comes from refs. 14, and 
12, 13, and quite likely it holds for all the models we consider in Section 3. 

We make the following remarks on properties (A)-(E). 

1. First we note that the irreversible entropy production ( a ) §  in (A) 
results in a phase space volume contraction. This implies in turn that the 
attractor which we denote A o [and which by property (C) is just the full 
phase space cg] will contain an invariant set A of zero Liouville measure 
and dimension equal to the fi'actal dimension of the motions (and strictly 
less than that of the phase space, see below) but of probability 1 with 
respect to the statistics of the motions generated by the dynamics S from 
initial data chosen randomly with respect to the Liouville distribution Po. 
It is convenient, therefore, to distinguish between the attractor A o as it is 
usually defined in the literature (which is a closed set for virtually all 
adopted definitions) and our sets A. The latter are not uniquely defined, 
but they are in an obvious sense more intrinsically related to the motions. 
It can very well be that Ao is smooth and even coincides with the full phase 
space, as is the case when (C) holds, while A is much smaller (and is a 
fi'actal). Thus in this paper, unlike in most established conventions, 
we shall call A the attractor: it will not matter which particular A one 
considers. 

We adopt, as definition of the fi'actal dimension of the motions (i.e., 
of A ), the Kaplan-Yorke definition (also called the Lyapunov dimension (15)) 
The latter is probably (15) quite generally equal to the Hausdorff dimension 
of those sets A which have the smallest Hausdorff dimension and which are 
visited with frequency 1 by almost all, with respect to the Liouville 
distribution Po motions (ref. 15, p. 641). 

2. The above properties (D) and (E) imply that the attractor A for 
the motions with a given energy is a fractal set with a dimension close to 
the full dimension 2D: the fractal dimension will be, in fact, of the order of 
2 D -  O( ( a )  § 2~x)D,  as immediately follows if one adopts, as above, the 
Kaplan-Yorke definition of fractal dimension. Note that (E) and the above 
weaker pairing rule are sufficient for this conclusion. Systems for which 
smoothness and the (weak) pairing rule hoM do show dimension reduction, 
i.e., the attractor in phase space has a dimension which is macroscopically 
different from that of the phase space itself. 

3. Reversibility implies an important property of the attractor A: if A 
is an attractor for the forward motion, then A _ = iA is an attractor for the 
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backward motion and, more generally, the statistical properties as t ~ _ 
of the motions generated by initial data randomly chosen with respect to 
the Liouville distribution/z o are trivially related. 

4. Very recently a firm theoretical basis has been given to the 
smoothness of the spectrum in the thermodynamic limit, t]6) 

5. The basic properties for the validity of our results for non- 
equilibrium stationary states are chaoticity (C) and reversibility (B). If (C) 
holds, the existence of the SRB distribution--i.e., of a probability distribu- 
tion describing the asymptotic statistics of the motions of a system evolving 
with a dynamics S, whose initial data are chosen randomly with respect to 
the Liouville distribution P0 in the phase space P - - c a n  be proved as a 
theorem: 

T h e o r e m .  If a system (cg, S) is a transitive Anosov system, then it 
admits an SRB distributions. (4) 

In conservative systems in equilibrium, satisfying (C), the distribution 
/z is the same as the Liouville distribution/z 0 itself (which is invariant by 
the Liouville theorem): see refs. 4, 17 and 18. Hence (C) implies the ergodic 
hypothesis in this case and the attractor A can be taken to be the full phase 
space cg. 

In this paper we are interested in dissipative systems satisfying (A) 
where new phenomena occur and/2 is not the Liouville distribution/x o. For 
systems satisfying (A)-(C) we prove a fluctuation theorem (see Section 7), 
which is our main technical result. 

3. M O D E L S  

We now list a number of models to which our theory can conceivably be 
applied. All these models contain thermostat mechanisms in order to enable 
the systems to reach a nonequilibrium stationary state in the presence of an 
imposed external field. Model 1 is a model related to electrical conduc- 
tivity, models 2 and 3 are related to shear flow, model 4 to heat conduction 
and model 5 to a fluid mechanics model for turbulent flow. 

We distinguish, as in Section 2, between the phase space ~ over which 
the system evolves according to the equations of motion and the collision 
phase space ~ consisting of the timing events ("Poincar6 section of ~,~"). 

The details of  the models described here will not be used in the following, 
since our main point is the generality of  the derivation o f  a fluctuation formula 
fi'om the chaotic hypothesis and its (ensuing) model independence. However, 
we inchtde them for concreteness and reference. 
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M o d e l  1. A gas of  N identical particles with mass m, interacting via 
a stable, short-range,  spherically symmetric  pair  potential  cp and with an 

I L external potential  cpe4:0, enclosed in a box [ - , :  , �89 2 and subject to 
periodic boundary  conditions and a horizontal  constant  external field Ei  
(i is a unit vector in the x direction). The external potential  will be just a 
hard-core interaction which excludes access to a number  of  obstacles (hard 
disks, to fix the ideas) so situated that  every trajectory must  suffer collisions 
with them. The system is in contact  with a " thermosta t"  adding (or sub- 
tracting) energy so that  the total internal energy stays rigorously constant.  
The equations of mot ion are 

1 
p j = F y +  Ei-o~(p)py 

F j - ~  --  E ~ q j ~ ( q j - - q i ) - - ~ q j ~ e ( q j  ) 

(3.1) 

with j = 1 ..... N; a(p) = E i .  Y'.j P J ( Z j  P]--) and Fj is the force acting on par-  
ticle j. The a term incorporates the coupling to a "Gaussian thermosta t"  
and follows from Gauss '  "principle of  least constraint." The constraint  here 
is the constancy of the internal energy: 

7 

H(p, q)= + ~ ~a(q,.- q/) + ~  ~(q/) 
j= 1 i<j j 

(3.2) 

which is a typical nonholonomic  constraint;  it follows then from Gauss '  
principle that the force corresponding to the constraint  is propor t ional  to 
the gradient with respect to pj of H. This model  has been studied in great 
detail in ref. 3 in the case N = 1 and ~o = 0 and q~" a hard-core potential  as 
above, making it a Lorentz  model  for electrical conductivity if E is an elec- 
tric field; a similar model  has been investigated numerically in ref. 19. It  is 
par t  of a wide class of  models, together with the following models 2 and 3, 
whose interest for the theory of nonequil ibrium stat ionary states was 
pointed out in refs. 20 and 21, where one can find the first studies 
performed in the context in which we are interested. The dimension of the 
phase space ~ of this system is d o = 4 N - 1  and that of  r is d o - 1  = 2D, 
with D = 2 N -  1. The phase space "contraction" rate, i.e., the divergence of  
the right hand side of  (3.1), is D a ( x ) =  Dot(x), which can be written in the 
form 

e(x) 
Da(x) = Dot(x) = D - -  (3.3) 

Dk T( x ) 
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where e(x) is the work  done on the system per unit  t ime by the external 
field and k T ( x )  is ( I / D ) Z j ( p } / m ) ,  which, if k is Bol tzmann 's  constant ,  
defines a kind o f  kinetic temperature: hence the name of entropy production 
rate per  (kinetic)  degree of  freedom that  will be occasional ly  be given to 
o'(x). 4 Note  that  a(x )  does not  have a definite sign. 

It has been proved t3~ that  for N =  1 and small E >  0 the average ( a }  + 
is positive, i.e., the system is dissipative in the sense of  Section 2. There 
seems to be no reason to think that  ( a ) +  is not  positive. F o r  the above 
model  with N >  1 no experiments  are avai lable yet on the pair ing rule or  
the Lyapunov  spectrum smoothness.  Nevertheless one can present  an argu- 
ment  for the validi ty of the pair ing rule, which may  sound convincing, but  
that  we have been unable  to substant ia te  mathemat ical ly .  5 In this case the 
time reversal m a p  i is jus t  the usual i: (q, p) ~ (q, - p ) .  

- _ ~ L ,  EL] Model  2. A shear  flow in a two-dimensional  conta iner  [ ~ ~ 2 
where the part icles evolve on a moving background  running with velocity 
iy9 in the x direct ion p ropor t iona l  to the height 37 in the y direction,  which 
is measured  with respect to that  of the center of  mass  of  the particles. The 
background  exercises a drag  on the j t h  part icle located at height yj  propor -  
t ional  to its pecul iar  velocity: t j j -  i?)Tj with respect to the background.  The 
in t roduct ion of  )Tj instead of the usual  yj  is due to the bounda ry  condi t ions  
we choose (see below), which do not  keep the height of the center of  mass 
of the part icles fixed. F o r  large N the difference between yj  and 37j will 
become negligible (see comment  6 in Section 8). Similarly for large N (and 
large L with n = N L  -2 fixed), the forcing y should be the shear rate in the 
fluid, i.e., y = aux/Oy, where u x ( y ) =  i?y is the average (local)  velocity of  the 
particles in the fluid at height y, as is indeed found in the computer  
experiments for this system. (12'22) If  F j  is as in the second equat ion of (3.1) 

4 If ff is the average of i-Pi, then ( l /N)~j  < p~) = i f 2  1_ mkT and we see that T(x) cannot be 
identified with the temperature unless we neglect/~2 compared to mkT, i.e., we identify the 
peculiar momentum needed for the proper definition of the temperature with the ordinary 
momentum (which should not be done at large E where one cannot identify (l/2)(Y~jp)> 
with mkT, with T being the usual temperature). 

5 Suppose that Eq. (3.1) is modified into the same equation with 0t(p) constant. Then refs. 23 
and 12 prove that the 4N Lyapunov exponents can be paired so that the sum of the corre- 
sponding pairs is just - a .  In model 1, 0c is not constant: however, it has an average value 
<ct> which is constant on the attractor, with probability 1 with respect to the choice of the 
initial data (with distribution /to): therefore we may hope that "things go as if" a was 
constant: hence the Lyapunov exponents should be so paired that their sum is - ( a > .  This 
is not yet the above fidl pairhlg rule because there we assert in addition that half of the 
exponents are positive and half are negative: and this only "follows" if reversibility (B) is 
also used. 
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and cpe=0 and qj---(xj, yj) the equations of motion are, using Gauss'  
principle of least constraint to keep the internal energy fixed 

d 2 1 
qJ = m r j -  ( ' i j -  

lz // 
oL(x)- --~, Fxd. i(Yi--Yj) ~,P--)-" 

m 2i~ j . _ j  m 

(3.4) 

with j = 1 ..... N. Here pj = m ( / I j -  iy)Tj) is the peculiar momentum relative to 
the background flow; Fz; is the force on particle j due to particle i, and 0c 
is again defined so that (3.2) is a constant of the motion; finally, ~ plays 
here the role of a forcing field as E did in model 1. One imposes periodic 
boundary conditions on the horizontal direction; on the vertical direction 
a natural boundary condition is perfect reflection against the walls at 
y = _ �89 This model has been extensively studied, numerically, in refs. 12 
and 22 with somewhat different boundary conditions. 

One can suppose that the total horizontal component of the peculiar 
momentum and the horizontal position of the center of mass, denoted, 
respectively, Px and X:,, are 0: this is consistent with the equations of 
motion. We shall refer to Px and X x as conserved quantities: but one should 
bear in mind that they are such in an "improper" way because they are 
conserved only if their initial values are 0: P.,. in fact relaxes to 0 with a 
Lyapunov exponent which in general is not zero (and equals the time 
average (0c) + of 0~). 

If it is assumed that Px = Xx = 0 and if one recalls that also H is a con- 
stant of the motion and one imposes a priori its value, then the dimension 
of the phase space ~ is do = 4 N -  3, which we write do = 2D + 1 for unifor- 
mity with the notation in model 1, so that D = 2 N - 2 .  The phase space 
contraction rate, i.e., the divergence of the r.h.s, of the equation of motion 
regarded as first-order equations for p, q, is Da(x), with 

~,j PxjP,,j a(x) = ~(x) + ~ 
D EjP~ 

o~(x) + ),O(N_l) e(x) (3.5) 
DkT(x) 

where T(x) can actually be interpreted as a kinetic temperature, so that 
a(x) can also be called the entropy production rate. 

Numerical experiments with N up to 864 show that ( a )  + > 0.(12" 13, 2_, 
Such papers also provide (strong) evidence for the pairing rule and some 
(weak) evidence for the smoothness. The time reversal map in this case is 
not the usual velocity reversal, but i: (x, Y, Px, P y ) ~  (x, - y ,  -Px,Py) .  
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M o d e l  3. This is a model for a shear flow produced by boundary for- 
ces, in contrast to model 2, where the shear is produced by body shear forces. 

The flow proceeds in a two-dimensional container [ - -L/2 ,  L/2] z and 
the equations of motion are simply 

1 
i lJ=mp j, p j = F j  (3.6) 

supplemented by periodic boundary conditions on the horizontal direction 
and shear-generating boundary conditions in the vertical direction: 

09' = f(09) (3.7) 

where 09 is the collision angle formed by the incoming velocity with the x 
axis, counted counterclockwise for collisions at y = �89 and clockwise for 
collisions at y = - �89 09' is the outgoing velocity angle formed with the x 

I axis, counted clockwise at y = �89 and counterclockwise at y = - ~_L. 
With the above angular conventions, 09'= 09 represents the ordinary 

elastic collision. We shall consider a "shearing collision rule" 09' =f(09), 
co'~< co, where f is a reversible collision rule. Reversibility here has the 
literal meaning: the collision obtained by reversing the particle velocity 
after a given collision [i.e., the incoming collision with an angle 7r - f (09) ]  
produces afterward the reverse of the original collision angle (i.e., z~-09). 
That is 

~ -  09 = f (n - - f (09) ) ,  f(09) ~< 09 (3.8) 

where the first condition is the reversibility condition and the second is the 
shearing condition. Equations (3.8) can be. solved by simply thinking of the 
graph of f(09) as a curve 09---, (09, f(09))e [0, n] 2 that is a concave arc 
connecting the point (0, 0) with the point (n, n), symmetric by reflection 
around the secondary diagonal of [0, n] 2. Furthermore, one imposes that 
the collisions preserve also the horizontal total momentum and the total 
energy. Since the horizontal momentum of the colliding particle (say par- 
ticle 1) changes [by Ip~l ( cos  09' - cos  09) ] ,  one can impose the t w o  con- 
servation laws by Gaussian minimal constraints, i.e., by requiring that the 
variation of the other momenta is 

p~=(1 + 8 )  p j+f l i  (3.9) 

for suitable multipliers 8 and fl, which after a brief calculation leads to 
explicit expressions for fl, 8, with fl = O(N -~ ) while 0 = O(N-2), so that the 
relations (3.9) generate corrections which, while enforcing the constraints, 
can be regarded as negligible for large N (see comment 6 in Section 8). 
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The symmetry of f also guarantees that the collision rule (3.8) 
corresponds to a Gaussian constraint 6 (forcing Ip,I to stay constant in the 
collision, while changing the direction with respect to the elastic collision); 
see ref. 24, where, however, the horizontal momentum conservation is not 
imposed. 

For concreteness one can take, following ref. 24, f such that the above 
arc is an arc of a circle centered on the secondary diagonal and passing 
through the indicated points. The circle curvature will be a measure of the 
shear strength. The dimension of the phase space ~ of this system is 
do = 4 N - 3 ,  if we fix the energy, the horizontal total momentum and the 
horizontal position of the center of mass. We write do = 2D + I as in the 
previous models, so that the dimension of the collision space c~ is 2D with 
D = 2 N - 2 .  We also suppose, naturally, that the collisions with the walls 
are among timing events. Then at every collision there is a reduction of 
phase space v o l u m e  (24) 

sin co' do)' sin f(co) 

sin co do) sin co 
- -  f ' (co) 

If we define n(x)= 1, when x is a collision with the wall and n(x)=0 
otherwise, the phase space contraction can be conveniently written as 
e -~ with r(x) equal to the time elapsing between the collision at x 
and the next at Sx and with the entropy production rate tr(x) defined by 

- r(x---) log \ sin co / 

This model has been studied in detail in ref. 24. 7 
There is numerical evidence that if f(co)--/:co, then ( a ) +  >0.  The 

pairing and smoothness properties have not yet been studied. The time 
reversal operation is the "usual" one (see model 1 ). 

e For this purpose one has to think 124) that the collision rule (3.8) is realized as a limit of a 
Gaussian constraint rule acting on a tiny corridor of width c~ expanding vertically the con- 
tainer at the top and bottom, where the particles can enter from the inside but are subject 
to a horizontal field +E~ (the sign depending on whether the particles are in the upper or 
lower corridor): the field will produce a bias in the scattering angle such that the particle will 
come out with an angle different front the incoming angle. The constraint is that the kinetic 
energy of the particles inside the corridors does not change; the particles colliding with the 
external corridor walls are just perfectly reflected. In the limit as ~ ~ 0 and Ea ~ oo (at 
suitable rates) a reflection rule like (3.8) is realized with a special f. By letting E 6 depend on 
the distance to the corridor boundaries, essentially any f can be realized in the limit ~ ~ 0. 

7 It is not difficult to see, by thinking of the constraint as a (limit of) a Gaussian constraint 
as above in 6, that also in this model Dtr(x) is an "entropy production rate." 
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Models 1 and 2 are easier to interpret as dynamical systems than this 
model, but they are physically somewhat artificial, in that the Gaussian 
thermostat is a rather unconventional model for a thermostat and the shear 
force is a body force rather than the usual boundary force. In this respect 
model 3 is better, as its unphysical reflection laws are a boundary effect 
which o.nly produces the net effect of generating a shear on the system. 

Model  4. This is a model for heat conduction considered in refs. 20 
and 21. In a box [ - L - H, L + H]  x [ - L/2, L/2], N particles move, inter- 
acting via a short-range pair potential; the boundary conditions are perfect 
reflection horizontally and periodic vertically; the particles are subject to the 
nonholonomic constraint that the total kinetic energies in the left part of the 
box [ - L - - H , - H ] x [ - L / 2 ,  L/2] and in the right part of the box 
[ H, L + H] x [ -- L/2, L/2 ] have constant values, denoted, respectively, by 
[ L/( 2L + 2H)]  Nk T_ and [ L/( 2L + 2H)]  k T § , T+ >1 T ,  i.e., obey 

~ + =  ~ 2,• p ~ N L L k T •  (3.11) 
- j=l 2m 2 H +  

Here Z• are the characteristic functions of the left and right parts of the 
box which have to be interpreted as plates of thickness L at temperatures 
T+ and T respectively; q -  (x, y). In addition, we impose that the total 
energy [given by (3.2) with ~b~= 0] of the gas ~o = H is exactly conserved. 

The constraints are implemented using Gauss' principle, i.e., by a force 
proportional to the gradients with respect to the pj of ~b• and ~o [which 
a~re simply Z• p:/m, pj/m, respectively), leading to the equations of 
motion 

1 
~I: =~ p:, pj=Fj- -oc+z+(x j )ps -o t_Z_(x j )p: -oCop J (3.12) 

with a•  s o defined so that ~ •  ~o are exact constants of motion. The 
values of ~• % can be easily computed; their general expression will not 
be needed here. For  the purpose of illustrating once more that the resulting 
forces will lead to a reversible dynamics we give their expression in the sim- 
ple case in which only ~_+ are imposed: in this case the values of a• are 
relatively simple and s o is not present. One finds 

~ j  [(p:/m).  0Z i (xj)  p~/2m + Fj. (pj/m) Z+_(xs)] 
cx• = ~-,iX 2 2 (3.I3) • p) 

Going back to (3.12), we note that, with the three mentioned con- 
straints, model 4 should be a quite realistic model for heat conduction. The 

822/80/5-6-2 
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dimension of the phase space ~ is do = 4N- -3 ,  which again we write as 
do = 2D + 1, with D = 2 N -  2, so that the dimension of the collision space 
cg is again 2D. The phase-space contraction rate is in this case 

Da(x) = ~ + (x) 2N+ + ~_ (x) 2N_ + ~o(X) 2N + O( 1 ) (3.14) 

if N:~ denote the number of particles in the right and left "plates". Equation 
(3.14) could also be interpreted as in the previous models as an entropy 
production rate. Some numerical evidence that ( a ) +  > 0  if T+ > T_ can 
be found in refs. 20 and 21. No evidence for pairing or smoothness rules 
seems available. The time reversal map is the "usual" one; see model 1. 

The above model equations can be made smoother by replacing Z by 
a smoothed version of the characteristic functions of the plates; say by 
functions which are = 1 except within a distance of the order of the inter- 
action range from the inner boundaries of the plates: in this region X_+ 
decrease gently from 1 to zero. 

M o d e l  5. This is a model related to turbulent flow, obtained from 
the Navier-Stokes (NS) equations. We consider the NS equations in a box 
[--Z/2, Z/2] 3, with periodic boundary conditions and for an incom- 
pressible fluid. If the velocity field is written in a Fourier series as 

I I ( X ) =  L e i k ' X ~ t k  (3.15) 
k # 0  

with '/k complex vectors with ~,k=~_k (reality of the velocity field) and 
)'k _1_ k (incompressibility), then the NS equations become 

"~k = - - i  ~ (Tk - k2) / /k~/k ,  + Rfk --  vk2Tk 
kl + k 2 = k  

(3.16) 

H k is the orthogonal projection over the plane orthogonal to k; v is the 
kinematic viscosity, and Rfk is the forcing (of course orthogonal to k) 
which will be taken to be nonzero only for a few components with small k. 
Since k = (2n/L)n with n integer, this means that the force acts only on the 
high-length-scale components. For simplicity we may think that the forcing 
has only two nonvanishing components RfkO, Rfk0, corresponding to two 
. . 1 2 

hnearly independent wave numbers k ~ k~ s The number R therefore deter- 
mines the forcing strength and will be identified with the Reynolds number 
(we keep the container size L and the viscosity v fixed). We take % -  0 
since it is the conserved center-of-mass velocity. 

s The simpler  case of only one nonzero componen t  can be trivial (e.g., if the forcing acts 
on the smallest  k, Ikl = ko) and  is therefore discarded here in favor of the next to the 
simplest, t'-s~ 
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In order to obtain equations in the framework of this paper from the 
phenomenological theory of Kolmogorov-Obuchov,  (26) we shall assume 
that the above equations can be replaced by the following simpler ones: 

?k = --i ~ (Tk, "k2) ]"]'kTk! "~fk ko~  JkJ <kR 
kl+k:=k (3.17) 

"~k----" --0~Tk-- i E (Tkl "k2)  ]-]'kYk, kR~[kI<kR+(LRf) 1/2v-I 
k l + k 2 : k  

Here, if k 0 = 2~r/L and f =  max IfuJ, the wave vector kR is the Kolmogorov 
momentum scale kR=ko R3/4. [rcf. 26, p. 122, (32.6)], so that if NR is the 
number of wave vectors ("modes") k, - k  such that when k0~Jk l  ~< 
kR+(LRf)I/2v-~ then NR~(kR /ko )3~R  9/4 and the phase space qf has 
dimension 2NR-- 2 = 2D with D ,~ R 9/4, while ~- has dimension 
do = 2NR -- 1. 9 

This means that the equations for the amplitudes Tk corresponding to 
k's in the inertial range, ko<~ [kl ~<kR, are "governed" by the reversible 
Euler equations. In the viscous range, Ikl > kR, the dissipation phenomena 
will be idealized by saying that the equations are simply such that only 
the modes k with kR<ikJ  <(kRq -v-U2 have a nonzero amplitude and 
evolve in such a way as to keep the total energy constant. This means that 
the parameter ~ is an effective thermostat (or viscosity), which has 
to be chosen so that the total energy is constant, i.e., so that (d/dt) 
~'k ITkl 2 = O: 

~-" k fk " "f-- k def E(X) 
g(x) - Y, lkl >kR IVkl 2 -- D,,kT(x) (3.18) 

Here e(x) and DL, kT(x  ) are simply the numerator  and denominator, 
respectively, of  the fraction defining ~t(x), if 2NoR is the number of modes 
in the viscous range and one defines 2Do = 2NOR. 

The Kolmogorov length k~ -~ is introduced here phenomenologically 
and we do not attempt a fundamental derivation of (3.17), (3.18). There- 
fore (3.17) has to be regarded as a phenomenologicai equation. A class of 
similar models was introduced in ref. 27. 

Note that ~t is proportional to the work e(x) per unit time and per 
viscous degree of freedom performed on the system, which is dissipated into 
heat, in order to l(eep the total energy constant: the proportionality constant 
is 2DL.kT(x) with k T ( x ) -  (1/2Do)ZIkI<kR ITkl 2 [which, however, is not a 
constant of motion for (3.17), (3.18) because of the imposed constraint that 

9 Taking into account the reality and incompressibility conditions forces the "/k, u  to have 
only two linearly independent components. 
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~"~k ]'~k] 2 is constant rather than Zlkl>*R [~/k[ 2]" The phase-space contrac- 
tion rate is in this case 

. . . .  ~(x) 
D , ,a ( x )  = u ~ t x )  = u , ,  ~ ~ , 

JJ,,KJtX) 
(3.19) 

Hence D , . ( a )  + can be thought of as the average amount of energy  dissipa-  

t ion per unit time by the flow divided by the k ine t i c  energy  contained in the 
viscous modes .  The first quantity plays a major role in Kolmogorov's  
theory, (ref. 20, p. 119) and its average is usually called e [ref. 26, (31.1)]. 
Since the kinetic energy contained in the viscous modes can be thought of 
as a kind of "temperature," we see that 2 D r ( a ) +  is proportional to the 
entropy "production rate." More appropriately, we can say that, for R 
large, 2 D , , ( a ) +  is proportional, once more, to the "energy dissipation 
rate" over a kinetic quantity equal to the average kinetic energy contained 
in the viscous modes if, for large R, the two quantities can be regarded as 
independent random variables. 

Note, however, that for the above model (3.17), there is no evidence for 
( a )  + > 0 or for the pairing and smoothness rules. The time reversal map is 
simply i: {Tk} --* {--Yk}" 

4. THE INTRODUCTION OF THE SRB DISTRIBUTION 

We now present a heuristic argument providing, in our opinion, a use- 
ful characterization of the SRB distribution: this point of view is important 
for the applications in Section 7. Our purpose is to look at it from a some- 
what different perspective than usual and to show that it leads to a new 
interpretation of the ergodic hypothesis and to a unification of equilibrium 
and nonequilibrium statistical mechanics. 

We deal with systems of N particles satisfying the properties (A)-(C) 
of Section 2 and we observe their motions x - - ,  S " x  at discrete times 
n = 0, + 1 .... in the collision space cr of dimension 2D; see Section 2. For the 
geometrical arguments used below (see, e.g., Fig. 1 ) it will be very useful to 
keep in mind the paradigm of hyperbolic systems: namely the Anosov map 
of the two-dimensional torus T2: 

S(r 1"~(r "~ mod 2n (4.1) 
r  2 ) \ r  

which plays a role analogous to that of harmonic oscillators in classical 
mechanics. This example is not only enlightening, but it is really the main 
source of intuition. Note that this is a reversible map if i is defined as 
i: (r r --* (r --r because i S =  S - l i .  
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Let O be a fixed poin t  on the a t t rac to r  A and let W ~  be the unstable  
manifold  of  O [dense  on A, see (C), Section 2].  ~~ The dimension of W ~  
is D, half  that  of  the phase space ~g; see Section 2. 

F o r  simplicity we shall suppose that  O is a t ime-reversal- invariant  
fixed point  O = iO; this assumpt ion  could  be easily relaxed. H 

The key idea on which we base our  analysis is that  the a t t rac tor  A 
should be considered to consist  of the smooth D-dimensional  unstable  
manifold W ~  of O (or  of  any other  fixed poin t  or  per iodic  orbi t  in A 
with dense stable and unstable  manifolds) .  Of  course the manifold  W ~  
can only fill A densely: we "lose" the accumulat ion  points. But all the 
information needed to perform time averages should be a l ready conta ined 
in W ~  itself, as we are only interested in the averages of  rather  regular  
observables (e.g., piecewise smooth) .  We think that  W ~  coincides with A 
in the same sense in which the ra t ionals  can be regarded as coinciding 
with the reals in in tegrat ion theory (which works  only if one considers 
integrals of  smooth  functions) and can be used to compute  numerical ly  
the integrals of smooth  functions. In the same way statistical averages 
with the dis t r ibut ion (2.1) should be computab le  by simply approx imat ing  
them with integrals over finite par ts  of g ~  o like the sets S rA obta ined by 
"blowing up" with a large time i terate S r a small  connected surface ele- 
ment A of  W ~  conta in ing O. 

In other  words  we want  to regard the possible fractali ty of A as a 
rather irrelevant accident. We want  to th ink of A as essentially identical to 
W~:  the lat ter  surface folds over and over again,  being enclosed in the 
bounded phase space ft. I t  therefore folds itself in ff just  as an uncut  folio 
is folded into a book,  thereby generat ing an a lmost  three-dimensional  
fractal set out  of a two-dimensional  smooth  manifold.  But th inking of A as 
an unfolded manifold  of  half  the space dimension (D in our  no ta t ion)  leads 
to a change in the usual  poin t  of view, which regards A as a fractal set with 
dimension close to 2D. 

In t roducing  forcing and friction (i.e., passing from an equil ibr ium to a 
s ta t ionary nonequi l ibr ium prob lem)  should then not be thought  of  as a real 

~o There might be 11o such fixed point O. However, a periodic orbit starting at a point P and 
with period n would be a fixed point for S" and we could get all the following conclusions 
by replacing S with S", since the statistics of S" and that of S coincide when S is chaotic 
enough. Thus, assutming the existence of a fixed point is not restrictive. 

H It is not difficult to realize that in models 1-4 there are always periodic orbits which are 
time reversal invariant, i.e., such that iO is also on the orbit, at least if one is willing to limit 
the particle density in some interval (whose size may depend on the range of the interac- 
tion). Also for model 5 it is very likely that periodic motions (unstable, of course) do exist. 
Note that since we are assuming (C), Section 2, it is automatically true that there are peri- 
odic orbits (i.e., chaotic systems always have many periodic unstable orbits). ~4~ 
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"discontinuity"--which would be the case if one took the viewpoint that 
one is passing from a nice, smooth, 2D-dimensional attractor A = cg to a 
nasty, strange, fractal A c c~ with dimension 2 D -  O(~2~x)D,  macroscopi- 
cally different from 2D [as implied by the pairing (D) together with the 
smoothness (E), Section 2]. 

Rather, it should be viewed as an insignificant deformation of the 
unstable manifold W~ which will fold itself in ~g not exactly as in the 
conservative case, but leave a few holes between the "pages" to account for 
its global fractality. This is a change with respect to the conventional point 
of view for the case of conservative systems: these are no longer really 
different from the dissipative ones. Their attractor has, in the new (uncon- 
ventional) sense, exactly half the dimension of the full phase space (the 
dimension the conventional point of view attributed to them is that of the 
full phase space, i.e., twice as large). 

The main consequence of such a viewpoint, besides the mentioned 
unification of conservative and dissipative dynamics, is that it allows us 
to think of the attractor as "unfoldable," with the consequence that our 
intuition about the motion on the attractor is greatly enhanced. 

This unfolded attractor, imagined as a fiat infinite surface, attracts 
exponentially fast nearby points: the approach to the attractor follows the 
stable manifolds associated with the attractor points, which can be thought 
of as needles sticking out of the attractor itself. The motion essentially 
consists, therefore, of an expanding (i.e., as unstable as possible) motion on 
the unstable manifold W~. 

We can now easily understand the statistics kt, (2.1), on the attractor, 
i.e., the SRB statistics, as follows. 

Let U be a ball with small radius h, centered at the fixed point O; and 
let us ask how to compute the time average of an observable F if the initial 
data are chosen in U with uniform distribution, say, with a distribution 
absolutely continuous with respect to the Liouville distribution. 

Clearly, the average of F over a large time T will be computable by 
looking at the image STU under S r for large T and by imagining S r U  
covered by the density into which the initial uniform density in U evolves 
in T time steps. If  we call A the connected part of W~o c~ U, this also means 
that we can regard its S r image, SrA,  o f  the connected part of  W~o n U as 
a goodfinite approximation St,3 to our attractor. 

The set s r u  will be extremely thin and it will "coat" the extremely 
large portion of I ~  o defined by SrA (i.e., by our "good finite approxima- 
tion" of the attractor), if we regard the attractor as unfolded. 

Let dx be a surface element on W~ and let us regard S as a map of 
W~9 into itself. We shall call Au(x) the absolute value of  the Jacobian deter- 
minant OuS(x) of  S as a map of  W~ into itself, at the point x. In this way 
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A,(x) will be the absolute value of the determinant of a matrix with a 
dimension equal to that of W~x, i.e., D. Then we are interested in computing 
the integral 

fsra pr(X) F(x) dx (4.2) 

where pr(X) dx is the amount of mass in the cylinder with base dx, which 
is the image of the cylinder in U with base S- rdx  and height equal to the 
height h of the initial "cloud of data" U. Denoting by ds (resp. d,) the 
dimension of the stable (unstable) manifold of O (which in our case are 
ds=d,=D), this means that pr(x) dx is proportional to ha'lS-rdxl, 
where I S -  r dxl is the surface area of S -  rdx. By the above definition of the 
local expansion rate A,(x), one has then 

aT(x) dx 
--1 

= c o n s t - A 2 1 ( S - r x )  ...A21(S-~x) d x ~  const. [-[ 
j =  - ~  

AT'(S:x) dx 

(4.3) 

which is, clearly, a formal relation because p r tends to 0 as T--, oo. Note, 
however, that (4.3) implies that the ratios between pr(x) and pr(x'), with 
x, x' in the surface elements dx, dx', are well defined, even in the limit as 
T---~ oo. 

Equation (4.3) is, for T large already a "good approximation" for the 
SRB distribution. It shows that the statistical averages should be computable 
by looking at a large part of W~, namely at the finite approximation of the 
attractor A called Srd above, and by imagining it coated with a density 
pr(x), and then using (4.2). 

The existence of the limit as T ~  oo of (4.2) can be seen by remarking 
that the limit can in fact be written as an integral over phase space, in spite 
of the fact that pT(X) tends manifestly to 0 as T ~  c~. For, when T ~  oo 
what really matters is the amount of mass ending up inside a generic little 
square E in the phase space <g, with center xe. Since E will be cut many 
times by SrzJ, we can imagine that the various "pieces" of Srd intersecting 
E are piled "vertically" in E: Figure 1 shows a picture for the simple 
case (4.1). 

If Izr(E ) is the total mass initially in U ending up in E after time T, 
we can rewrite (4.2) as 

~Izr(E) F(xe) (4.4) 
E 



q E 

952 Gallavotti and Cohen 

Fig. 1. The parallel lines are intersections of the finite approximation for the attractor Srzl 
with the set E, represented by a square. The ~, q axes are "parallel" to the unstable and stable 
manifolds W~, W~ respectively. Each of them is coated, eventually, by the image s r u  of U 
which gives them a thickness (not shown). In the ease of the map (4.1) the parallel lines are 
generated, if one moves on W~ away from O, in the following typical order: from bottom to 
top first one draws, successively, the lower line of each pair; then one draws the second, then 
one should draw a third series of lines above the second and keeps going in this way until the 
endpoints of srA are reached. For T ~  oo the parallel lines fill E densely. 

p rov ided  E is so smal l  tha t  we can  neglect  the va r i a t i on  o f  F inside E, and  

tha t  the E ' s  pave  the phase  space. Suppose  we set up  a c o o r d i n a t e  sys tem 
in the small  box  E (which  is a box  wi th  full d i m e n s i o n  2D)  so tha t  the  

" h o r i z o n t a l "  c o o r d i n a t e s  are  cal led ~ and  the  "ver t i ca l "  ones  q. A po in t  in 

Ec~A is deno t ed  x (~ , r / )  and  the surfaces o f  cons t an t  q are  connec t ed  
surface e lements  o f  the  uns tab le  fo l ia t ion  W "  in E (a fo l ia t ion  o f  a set E 

is a family  o f  d is jo int  connec t ed  surfaces whose  u n i o n  is E) ,  whi le  those  o f  
cons t an t  ~ are  connec t ed  surface e lements  o f  the s table fo l ia t ion  W s. 

T h e n  we see tha t  (4.2), before  the l imit  as T ~  oo is taken,  can  be expressed 
as a sum ove r  the connec ted  par ts  o f  the surface 12 S rA that  fall in E (the paral le l  

lines in Fig. 1). I f  {qj} represent  t h e j t h  line, then  we can write  (4.2) as 

I{,lj) PT(~, r/j) F(x(~, qj)) d~ ~ IE,6'~(~) d~ v(drl) F(x(~, ~)) 
~j 

(4.5) 

~z Which, we recall, represents the finite approximation to the attractor defined above. 
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where d~ denotes an area element on {r/j}. In the limit T--* 0% while 
PT(~, r/j) tends to 0, the number of lines {r/j} tends to infinity and the sum 
over the surface elements of Srzl that cross E should converge to an integral 
over r/ and ~ with respect to some measure /7"(~)v(dr/)d~ with both the 
density/~"(~) along the unstable manifold and the measure v well defined. 
The measure v will give us the detailed information on how the various 
pieces (layers, or lines in Fig. 1) of U intersecting E pile up and the dis- 
tribution of the gaps between them in E, ~3 hence on its fractal nature. 
On the other hand, /Y~(~) will be a function such that the ratios 

/~(~) d~ v(e)/~/~'(~) d~ v(e') should tell us the ratio of the masses of U 
ending up in connected layers that we can denote e and e', coating the 
pieces of the unstable manifold passing through r /and  r/', inside E, which 
should be well defined in the limit T--, + ~ as argued above. We regard 
as natural, in the above context in which E is fixed, to define v so that v(e) 
is the mass of U ending in a layer e around r/, which implies ~ ~ (~ )  d~ = 1. 

5. THE T H E R M O D Y N A M I C  ANALOGY 

In this section we describe theoretical difficulties with the heuristic 
analysis of Section 4 and with a mathematical proof of the existence of the 
limit of (4.2). The solution to the difficulties that will be pointed out 
necessitates the introduction of more refined ideas and eventually the use 
of Markov partitions. We first point out the difficulty. 

If the analysis of the previous section is correct, i.e., if fi"(~) really 
exists, we should be able to "calculate" it, at least formally. While it is 
evident that the function/~(~) is defined up to a constant for each q such 
that (~, r/) ~ W~ [-because of formula (4.3) and the comment following it], 
it is much less evident that /~(~) behaves reasonably regularly in (~, q) 
E n  W~. 

Clearly the right-hand side of Eq. (4.3) can be used to compare the 
values of /~"(~) and of/~"(~') if x = ( ( ,  q) and x' =(~' ,  q) are points of 
Ec~ W~ with the same r/ [note that in such a case only few of the factors 
in (4.3) have ratios really different from 1, because S - i x  and S-Jx  ' 
approach O exponentially fast and start close on a connected part of I4~o]. 
However, if we compare /~,i(~) and ~"'(~) with the same ~ and (~, q), 
((, r / ' )~Er~ W~,,we run into the difficulty that the distance between (~, q) 
and ((, r/') measured along W" o may be extremely long, in fact, as long as 

J3 Note that "gap" here does not mean an actually empty region: since W~ is dense in E [by 
(C), Section 2] there can be no open regions in E which are not crossed by one connected 
part of Wg. In general one should think of v as supported by a dense "Cantor set." The 
limit (4.5) only defines, of course, the product ~(~)d~ v(dq). 
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we please by varying the two points on the surface ~ = const. Therefore the 
function /~"(~) might vary quite irregularly in E. Hence we see that the 
existence of a limit in (4.5) is not so obvious even though (4.3) provides 
immediately an expression for the ratios of the limit density on the set 
W~ c~E. 

We must find an alternative way to control the variations of such a func- 
tion in Ec~ W~ in order to argue that #~(~) is well defined. The number of 
connected components of ~ in E is denumerable and we cannot expect that 
the SRB distribution is supported by a denumerable set of du-dimensional 
surfaces. Hence we are in a position similar to when attempting to define the 
integral of a continuous function over a segment from the knowledge of the 
function at the rational points on the segment: this is possible only if the 
function is not too wildly changing from point to point. 

The resolution of this difficulty proceeds in two steps. First we push 
the analysis of the variability of Pr(~, ~1) just given somewhat further to 
arrive at Eqs. (5.3) and (5.4) below which are useful to illustrate the 
development of the thermodynamic analogy that gave rise to the thermo- 
dynamic formalism. This will enable us, in Section 6, to discuss the proper 
solution to the problem of the existence of the limit (4.5) and, implicitly, 
of the function ff"(~), based on this thermodynamic analogy. 

Let x = ( ~ ,  r/), x' =(~,  r/') be points o f E n  W~ and let d~ and d~' be 
two infinitesimal surface elements in E c~ W~ at different heights r /and r/', 
corresponding to each other, in the sense that the stable manifolds through 
d~ ~ W~ intersect the unstable manifold W~, exactly on d~'; see Fig. 2. 
Then the masses pr(~, r / )d~ coating the segment d~ and PT(~, ~')d~' 
coating the segment d~' have a ratio that can be computed by using (4.3) 
and by remarking that the ratio of the areas d~/d~' is 

Hence 

d~ IS-'(S d~)l IS-=(S~ d~)I IS-~(SM dg)I (5.1) d~' IS-'(S d~')l IS-'-(S= d~')l . . . . .  IS-M(SM d~')I 

d~ = (MjO o' A:'ISJx)-, j ,  "~ IsM d~l 
d~' .4,, (S x )J IS M d~'l (5.2) 

See Fig. 2 for an illustration. 
But [sMd~[/lSMd~'[ ~M--o~ 1 because the two segments approach 

each other, while greatly and chaotically erring toward oo on W~9 at the 
exponential speed of the expansion rates. 

Hence by combining (5.2) for M ~  oo and (4.3), we see that the 
ratio of the masses Pr(~,tl) d~/Pr(~,~l')d~' in corresponding intervals 
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Fig. 2. The two lines at constant q are at height t /and ~/' respectively. The two infinitesimal 
segments d~ and d~' correspond to each other, as they are crossed by the same set of stable 
manifolds, the extreme two of which are drawn as dashed lines. 

d~, d~' near the corresponding points x, x' ~ E with local coordinates (~, q) 
and (~, r/') is simply 

+]--I~ A2 (Six) 
A2,(SJx, ) (5.3) 

This shows that the SRB distribution/~ can be formally given by attributing 
to the "points" on the unstable manifold of A a weight given by 

const- 1--[ A21(Six) = const .exp log A.(SJx (5.4) 

or by a density on W~ given formally by the product in (4.3). Such 
statements should be interpreted in the same way in which one interprets 
statements like: "the one-dimensional Ising model with nearest neighbor 
interaction attributes to the spin configuration (a;)_~ the probability" 

const exp(- ,55  
- - c t )  
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The formal expression (5.4) must therefore be interpreted as a limiting 
statement. The function h(x) - log  A,(x) in (5.4) plays the same role as 
Jty0ty~ in the Ising model in (5.5) and the appropriate way of understanding 
(5.4) is, as we have in fact discussed, as a limit of (4.3). The important 
realization of Sinai ~4~ was that Eq. (5.4), via (5.5), had a close analogy in 
statistical mechanics. 14 

This remark led Sinai to his general theory of Markov partitions (see 
below), which is the main technical tool that is used to show mathemati- 
cally that the limit of (4.2) or (more precisely) the limit in (4.5) really exists 
and for describing its general properties in satisfactory detail [by deducing 
them from the well-known theory of one-dimensional Gibbs states of spin 
systems with exponentially decaying interaction potentials; the latter is not 
really different from the theory of the Gibbs state corresponding to (5.5)]. 

Without entering into the details of Sinai's work we shall use (5.4) in 
Section 6 to give a heuristic justification of formula (6.3) below, which is 
the basis of our analysis in Section 7. 

6. COARSE GRAINING AND M A R K O V  PARTITIONS 

The above discussion has, as already said at the beginning of Section 5, 
just heuristic value, as it has not led to a really usable formula for 
~,t(~) d~ v(d~7), but just to a few relations that such a function must obey 
when evaluated on W~. 

The solution lies in a stricter interpretation of the thermodynamic 
analogy [i.e., the similarity between (5.4) and (5.5)]. To understand the 
rigorous solution (given in ref. 4) to the problem of showing the existence 
of the limit (4.5) and the existence of fi'~(~) and v(dr/), one has to introduce 
the concept of a "parallelogram" and of a Markov Partition g of the phase 
space ~ into parallelograms. This can be ultimately related to the problem 
of constructing a good division of the phase space in cells (i.e., a "good" 
coarse graining) so that the evolution can be correctly represented as a cell 
permutation, without "distorting" the hyperbolic nature of the motion (for 
such an interpretation of what follows see ref. 28). 

A parallelogram will be a small set with a boundary consisting of 
pieces of the stable and unstable manifolds joined together as described 
below. The smallness has to be such that the parts of the manifolds 
involved look essentially "straight": i.e., the sizes of the sides have to be 
small compared to the smallest radii of curvature of the manifolds W~. and 
W~, as x varies in ~g. 

~4 Hence the name "thermodynamic formalism" given by Ruelle to the mathematically theory 
based on the above point of view. q6'7~ 
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xr/ 

Fig. 3. The circles are a neighborhood of x of size very small compared to the curvature of 
the manifolds; the first picture shows the axes; the intermediate picture shows the x operation 
and W,~ '6, W ~'~r (the horizontal and vertical segments through r /and  ~,. respectively, have size 
~); the third picture shows the rectangle E with the axes, and the four marked points are the 
boundaries OzI" and 0zP. The picture refers to a two-dimensional case and the stable and 
unstable manifolds are drawn as flat, since the A's are very small compared to the curvature 
of the manifolds. 

Therefore let 6 be a length scale small compared to the minimal 
(among all x) curvature radii of  the stable and unstable manifolds. Let 
W~ '6, WSi 6 be the connected parts of W~, W~ containing x and contained 
in a sphere of  radius 5. 

Let us first define a parallelogram E in the phase space cg, to be 
denoted by AUx A", with center x and axes A u, A S with .4" and AS small, 
connected surface elements on ~ and W~x containing x. (Fig. 3). Then E 
is defined as follows. Consider ~ ~ A u and ~/s A s and suppose that the inter- 
section ~ x r / -  W~, "6 c~ W,~ "6 is a unique point (this will be so if 6 is small 
enough and if A u, '4s are small enough compared to 6, as we can assume, 
because the stable and unstable manifolds are "smooth ''~5 and transversal; 
see footnote 3). 

The set E =  ,4"x'4S of  all the points generated in this way when ~, ~/ 
vary arbitrarily in '4u, '4s will be called a parallelogram (or rectangle) if the 
boundaries OA" and OA s of A u and A S as subsets of W~ and WS~, respec- 
tively, have zero surface area on the manifolds on which they lie. The sets 
O, ,E-  A" x OA ~ and O,.E = OA" x "4~ will be called the unstable or horizontal 
and stable or vertical sides of  the parallelogram E. 

Consider now a partition g = (E~ ..... E , . )  of  ~g into jIr  rectangles Ej 
with pairwise disjoint interiors. We call 0 , , ~ - U j O , E j  and 0 , ~ - U j O , E j  
respectively the gnstable boundary of g and the stable boundary of o ~, or 
also the horizontal and vertical boundaries of  ~, respectively. 

~5 This is only approximately true, because the tangent planes of the stable and unstable 
manifolds are only H61der continuous with some positive exponent related to the gap 
between the positive or negative Lyapunov exponents and 0. 
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We say that g is a Markov partition if the transformation S acting on 
the stable boundary of g maps it into itself (in formula this is SOng c Osg) 
and if likewise the map S-~ acting on the unstable boundary maps it into 
itseff (S-~0ug c 0ug). 

The actual construction of the SRB distribution then proceeds from 
the important result of the theory of Anosov systems expressed by what we 
shall call "Sinai's first theorem": 

T h e o r e m .  Every transitive Anosov system admits a Markov parti- 
tion g.(4) 

The above theorem is the first step toward a controlled version of the 
heuristic arguments given above and towards a usable form of Eq. (4.5) 
based on a suitable interpretation of (5.3). It can be extended to imply the 
existence of more special Markov partitions: for instance, to show the exist- 
ence o f 'Markov  partitions with any one of the following three properties 
(the last shows that the first two can be realized simultaneously and will 
play a key role in our analysis): 

1. The construction of g can be done (29) so that the horizontal axes 
of Ej all lie on W~o (and the vertical on W~) and their union is a set that 
can be obtained from a single small connected surface element zT of W~ 
(resp. 3 '  of W~) containing O by dilating it with a high iterate S Q of the 
time evolution S. In other words the union 0 i  zl~ of the horizontal axes of 
the parallelograms Ej e g can be regarded as a good finite approximation 
to our attractor A, because it has the form SozT with ,~ a connected surface 
element of the unstable manifold W~, containing O. Likewise the union of 
the stable axes can be regarded as a large connected part of the stable 
manifold W~. 

2. If the reversibility property holds, it is clear that ig is also a 
Markov partition. This follows from the definition of Markov partition and 
from the fact that reversibility implies 

W~=iW~x (6.1) 

The definition of a Markov partition also implies that the intersection of 
two Markov partitions is a Markov partition, hence it is clear that there 
are Markov partitions g that are reversible in the sense that ~ = ig. 

3. Furthermore, one can construct a Markov partition g which is 
reversible and at the same time satisfies the property 1 above. (29) 

Here we shall use Markov partitions that satisfy property 3 above. 

In order to formulate Sinai's second theorem, which gives an expres- 
sion for a controlled approximation to the SRB distribution, we consider 
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the partition g r =  0 r__ r S - J g  obtained by intersecting the images under S~ 
j = - T, .... T, of g. Then @ is still a Markov partition and it is time reversal 
invariant if g is. We now construct a probability distribution that we 
regard concentrated on the finite approximation AT to the attractor, 
consisting of the union of the horizontal axes of g r  (see remarks 1 
and 2 above), and equal, with the notations of remark 1 above, to 
s r + Q J =  A r  . 

We note that the parallelograms of ~r  can be labeled by the strings of 
symbols J - r  ..... Jr  and they consist of the points x such that Skx~EA for 
-T<~k <~ T. In other words the parallelograms consist of those points x 
which in their time evolution visit at time k the parallelogram Jk [one 
usually says that these are the points whose symbolic dynamics on ~ coin- 
cide at the times ("sites") k between - T and T]. One can convince oneself 
that the transformation properties of the boundaries of the parallelograms 
of ~ imply that the strings J - r  ..... Jr  that can be generated by points in 
phase space can be identified with those which are "compatible with 
nearest neighbors," i.e., such that SEjkc~Eik+, do have interior points. It is 
the latter property that allows us to regard (5.4) as essentially similar to 
"(5.5) and the SRB distribution as a Gibbs state on a system of spins (the 
labels j of the parallelograms in 8)  subject to a hard-core short-range 
potential (i.e., with a compatibility condition between nearest neighbor 
spins). 

In a parallelogram any point can be regarded as center. However, 
there are special points that are usually taken as centers because they play 
a special role. Accordingly, we shall take as center Xj_r,....jr of a 
parallelogram Ej_,....jr a point whose symbolic dynamics string j at the 
times k with Ikl > T is fixed in a standard way; i.e., by defining jk for k > T 
(respectively, k < - T )  as a compatible sequence depending only on Jr 
(respectively, J-r) .  We cannot in general make the choice of continuing 
J - r  ..... Jr at times k >  T or k < -  T with a fixed symbol because this may 
lead to an incompatible sequence (hence the choice that we make is "the 
simplest" possible: it leaves some arbitrariness because there are many 
strings of symbols that start with a given symbol. The arbitrariness is, 
however, irrelevant for what follows). 

We can visualize the small parallelograms forming g r  as a lattice of 
parallelograms: two parallelograms adjacent and on the same vertical strip 
will have horizontal axes that correspond to each other in the same sense 
that the close horizontal surface elements used in deriving (5.3) correspond. 
Therefore if we attribute to the horizontal axis of the parallelogram Ej in 

- - i  _rTr/2-1 A,TI(Shxj) for some g~r with center xj a weight equal to A .... (xj) - 111, = -3/2 
large number of time steps r ~< 2T, we see that the ratios of  the weights of  
corresponding surface elements automatically realize an approximation of  the 
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product ("with r =  ~ " )  #~ (5.3), at least if we take ~,~ T, so that  the size of  
each para l le logram is so small  that  the weight we a t t r ibute  to each does not  
depend on which poin t  of  Ej we regard as a center and that  no essential 
ambigui ty  arises as to which weight to a t t ibute  to a paral le logram.  16 Note  
that  the above  weight is the inverse of the expansion coefficient of  the m a p  
S ~ as a m a p  of  W~-,/, x to W ~ , ~  (between S-~/2x and S~/2x), i.e., 

r / 2  - -  1 

ffu.~(x)= I-I A,,(S&) 
j = - -  r / 2  

(6.2) 

A similar quant i ty  A~,~(x) can be defined by regarding S ~ as a map  of  

W~_,~ x to W~,a x. 
The const ruct ion thus generates a probabi l i ty  d is t r ibut ion which, by 

the above analysis,  satisfies (5.3) more  and more  exactly as r ~ oo. Hence 
this analysis suggests the following theorem [which  we consider  a corol lary  
of  "Sinai 's  second theorem"; see ref. 4; for details  about  the connect ion of  
what  can actual ly be found in refs. 4, 5, and  6, 717 and the in terpre ta t ion  
that  we quote below, see ref. 29, Section 3 and Eq. (3.12) in par t icular ,  or  
ref. 30, Eq. (1.10)]:  

T h e o r e m .  If  fig, S) is a transit ive Anosov system, the SRB dis t r ibu-  
t ion/~ exists and  the/~ average of  a smooth  function F is 

~,, Zj.~,7. 'r (xj) r(xj) u(dx) F(x) = lim 
,,-->,/,-~ = Z :z ,7 ' j x : )  

dZ-r lim f, lar, r(dx) F(x) 
T / >  r / 2  ~ ~ ,  

(6.3) 

where, with the above notat ions,  xj is the center point  in Ej ~ 8r .  

The above/.zr.  ~ as defined by the middle  rat io in (6.3) can be taken as 
a "concrete" procedure  to follow in approx imat ing  the SRB distr ibut ion.  

t6 The size of the parallelograms of gr is clearly decreasing as e-~.r, at least, if ). is the spectral 
gap; see footnote 3. However, our "natural choice" of the center .'r releases us from this 
restriction in the formulation of the theorem below. 

~7 For a more technical exposition see Ruelle. t6' 7~ 
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In the case of equilibrium under assumption (C) in Section 2, the dis- 
tribution/x in Eq. (6.3) can be shown to coincide with the microcanonical 
ensemble, as already mentioned, t17), 18 

7. APPLICATION 

The chaotic hypothesis can be taken as an extension of the ergodic 
hypothesis for equilibrium statistical mechanics to systems in nonequi- 
librium stationary states (conservative or dissipative). In the equilibrium 
(i.e., conservative) case it implies the ergodic hypothesis (but it is stronger) 
and hence the microcanonical distribution, which we know how to use in 
order to draw physical consequences. 

It is therefore legitimate to ask whether the chaotic hypothesis and the 
ensuing SRB distribution have any predictive value of their own. Just as 
the ergodic hypothesis implies the well-tested classical thermodynamics, the 
new hypothesis should imply, for example, irreversible thermodynamics of 
nonequilibrium stationary states, without the necessity of solving the 
equations of motion. It is not clear that this is so. 

However, there are already some experimental results that offer sup- 
port to the chaotic hypothesis, since one can understand their outcome by 
using it. 

Here we examine, in particular, one experimental result, ~22) which the 
authors already attempted to explain by relating it to our chaotic hypothesis. 
Some of the data in ref. 22 require, to be unambigously understood, the 
discussion in ref. 3. We shall take the viewpoint of the preceding sections 
to make more precise and detailed the argument in ref. 22, modifying it to 
some extent in order to put it on a more mathematical basis. 

In the context of this paper the experiment of ref. 11 deals with model 
2 in Section 3 and measures the entropy production rate [i.e., phase-space 
contraction rate; see Section 3, (3.5)] as seen on a stretch of time r short 
compared to the duration of the experiment T. and repeating the measure- 
ment T/r times.19 We emphasize that this is an experiment on a system far 

Js One should not be disturbed by the fact that this is a rigorous mathematical theorem only 
for Anosov systems or for somewhat more general systems, e.g., "axiom A" attractors t6' 7~: 
one should not forget that the microcanonical ensemble is also lacking a mathematical 
justification in equi~brium theory. In fact the only equilibrium case in which one can prove 
the ergodic hypothesis is for the hard-sphere gas, t17' 32. z~ a major piece of work. In the case 
of only one hard sphere moving in a lattice of obstacles (model 1 with N = 1, ~p = 0, and 
~pe a suitable hard-core potential, i.e., a triangular lattice of hard disks) the present point 
of view can also be shown to hold in the presence of dissipation, t3~ 

~9 The reader should not mind that the symbol for the integer T is sometimes also used for 
the absolute temperature. 

822/80/5-6-3 
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from equilibrium, Calling Da~(x) the entropy production rate measured on 
the motion originating at S-~/2x and observed ~ units of time (we take r 
even for simplicity), we define it [see (3.4), (3.5)] by 

Da ~( x ) = O 1_ ~/2 - , a(SJx) de=r D ( a )  + a~(x) (7.1) 
l"j= --r/2 

where ( a ) §  is the average in the future of a(SJx), which is a constant 
almost everywhere in phase space with respect to /~o-random choices of 
initial data. 2~ 

The total entropy production while the phase space point x evolves 
between S-*/2x and S~/2x is obtained by multiplying (7,1) with the time 
elapsed during r such timing collisions. For simplicity we think that the 
time interval to between the timing collisions is constant. Note that x is the 
middle point of the segment of a trajectory of (discrete) time length r, 
defining the fluctuation a~(x) in (7.1). 

It is perhaps important to stress that ( a ) +  is very different from the 
limit as r--* + oo of  a~(x) in (7.1): in fact the latter (by the time reversal 
symmeOT) vanishes, while the former is positive, as follows from numerical 
evidence (see Section 3) and as assumed in (A) in Section 2. 

The experiment divided the a,  axis into small intervals Io, 1_+1 .... and 
measured the quantity a~(x), building a histogram counting how many 
times the a,  fell into the interval Ip [where a~(x) = p] .  Obviously we expect 
a distribution n,(p) centered around a (forward) average which is [see 
(7.1)] exactly 1. The result for n~(p) can be found in Fig. I of ref. 22 for 
one (rather large) value of r and one of y and N =  56. 

A second experimental result is for 

1 n~(p) 
H~(p) = log - -  

2Nr to (a )  + 7t~(-p) 

i.e., essentially for the logarithm of the ratio of the probability that 
a , ( x ) = p  to that of a ~ ( x ) = - p .  The result (Fig. 2 of ref. 22) is, for the 
rather large value of r considered, a remarkably precise straight line for 
H~(p) as a function of p, i.e., H~(p) is a linear function ofp.  

A third experiment shows that the slope of this line as a function of 
r satisfies, even for large deviations, the relation of proportionality to r for 
z large (Fig. 3 of ref. 22). 

20 This because the SRB distribution satisfies the extended zeroth law, (2.1), which says that 
the averages are, with/~o-probability 1, independent of the initial data. 
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The results are rather precise, with apparent ly  little margin  for errors, 
hence one has to find a theoretical reason that  the probabil i ty distribution 
of Da~(x) has the form 

~z,(p)dp ~r P(a, ~ (p, p + dp)) = e-~r +'cp dp 

o r  

n,(p) 
~,(-p) - -  = e 2rcp (7.2) 

for a suitably chosen constant  C and a suitable even function ( (p )  with 
min imum at p = 1 and with the argument  of the exponential  correct up to, 
apparently,  p, z independent corrections (see Fig. 3 of  ref. 11 ). In ref. 22 a 
theoretical a rgument  is presented which leads to 2C = D t o ( a )  +, if to is the 
average time between timing events. 

We are now going to show, and thisis  our main technical result [ and a 
theorem under assumptions (A) - (C)  of Section 2] ,  what  we call a fluctuation 
theorem: 

Fluctuation Theorem. Let (cg, S) satisfy the properties (A) - (C)  
of Section 2 (dissipativity, reversibility, and chaoticity). Then the proba-  
bility rc,(p) that  the total entropy product ion Dztoar(x) ,  (7.1), over a time 
interval t = rto (with to equal to the average time between timing events) 
has a value D t ( a ) +  p satisfies the large-deviation relation 

~z~(p) = eD,<,> § p (7.3) 
zt~(--p) 

with an error in the argument  of  the exponential  which can be estimated 
to be p, z independent. 

This means that  if one plots the logari thm of the left-hand side of  (7.3) 
as a function of p, one observes a straight line with more  and more  preci- 
sion as r becomes large (in agreement  with Fig. 3 in ref. 22). 

Remark. Since the above theorem is deduced under the assump- 
tions (A) - (C)  only, the result (7.2) will apply as well to the models 1 and 
3-5. This gives a parameter-free prediction of the outcome of several 
numerical experiments similar to the one described above. 

The main ideas for the proof ~1"29"3~ of the above theorem are the 
following. 
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The probabil i ty that  a , (x )~  [p over the probabil i ty  that  a~(x)~ I_p is, 
if one uses the notat ions and the approximat ion  p r. ~ to/.t described at the 
end of Section 4 [see (6.3)] with F(x)=a~(x) ,  

(7.4) 

where/1,,, ~(x) is the absolute value of the Jacobian determinant  of  S" as a 
m a p  of  W~ into itself, evaluated at the point  S - ' / 2 x ~ S r A  [i.e., as a m a p  
between S-~/2x and S~/2x, see (6.2), (7.1)]. 

Since Pr.~ in (6.3) is only an approximat ion  at fixed T, r, an error is 
involved in using (7.4). It  can be shown that  this error can be estimated to 
affect the result only by a factor bounded above and below uniformly in 
"c,p. 11"29"3~ This is a remark  technically based on the thermodynamic  
analogy pointed out in (5.4), (5.5). 

We now try to establish a one-to-one correspondence between the 
addends in the numera to r  of  (7.4) and the ones in the denominator ,  aiming 
at showing that  corresponding addends have a constant ratio which will 
therefore be the value of the ratio in (7.4). 

This is possible because of  the reversibility proper ty  (B), Section 2. Let 
x a A ;  then i x e i A .  By using the identity S - ~ ( S * x ) = x ,  the identity 
S -  ~(iS - *x) = ix (time reversal), and (6.1), we deduce the relations 2~ 

a~(x) = -a~(ix) ,  ft., .(ix) = ffT,~(x) (7.5) 

which are identities.( l' 22, 29). The first equality in (7.5) is obvious,  as in all 
the cases considered the i operat ion changes the sign to a(x), the rate of  
change of the phase space volume. The second equality in (7.5) is also easy 
to check: in fact let fl be a surface element on W~ around S-~/2x and let 
13'= S~fl be its S ~ image a round  S~/2x: then A,. ~(x) = IP'WI/~I. Applying i to 
fl and fl', one obtains surface elements ifl and ifl' on W~x with the same 
area // and fl' (because i is an isometry)  around,  respectively, S~/2ix and 
S-~/2ix, so that  the expansion rate A, . r ( ix ) i s  li#l/li•'l = I/~l/I/~'l = zi2, ~r(x). 

The ratio (7.4) can therefore be written simply as 

~ i  - ~  _ f f ~ ' ~ I x j )  Z~j,..(~)=p ., ~(xj) Z~,.,(xj)=p 
Z~j, .,(~,j)= -p  f fT ' r (xj)  - Z~j.  ~ ffs, ~(xj) 

(7.6) 

-'~ The key remark is that time reversal i maps Ej into iEj and at the same time changes the 
horizontal surface elements of Ej into the vertical ones of iE s and the vertical surface 
elements of Ej into the horizontal of iEj; see (6.1). 
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where xj e Ej is the center of Ej. In deducing the second relation, we make 
us of the existence of the time reversal symmetry i, of (7.5) and assume 
that the centers of xj of Ej and x ,  of El, = iEj are chosen such that x i, = ixj. 

It follows then that the ratio between corresponding terms in the ratio 
(7.6) is equal to A~(x)AT.~(x) .  This differs from the reciprocal of the total 
variation of phase space volume over the ~ time steps between the points 
S-~/2x and S~/2x only because it does not take into account the ratio of 
the sines of the angles ~(S-~/2x) and ~(S~/2x) formed by the stable and 
unstable manifolds at the points S-~/2x and S~/2x (see footnote 3). But 
,~,l~(x) A ~ ( x )  will differ from the actual phase space contraction under 
the action of S ~, as a map between S-~/2x, and S~/2x, by a factor that can 
be bounded between B-~ and B with 

Isin ~9(x)l 
B = max 

x.x, Isin ,9(/)1 

which is finite by the transversality of the stable and unstable manifolds. 
Now for all the points xj in (7.6), the reciprocal of the total phase 

space volume change over a time rt0 is exp[a~(xj)<a>+ torD], which 
(by the constraint imposed on the summation labels a~=p) equals 
exp(Dto~<tr>+p). Hence the ratio (7.4) will be exp(Dto~(a>+p),  to 
leading order as D, r ~ oo, proving (7.3), with 2C=D<tr> + to. It is impor- 
tant to note that there are two errors ignored here, as pointed out in the 
previous paragraph and in the paragraph following (7.4). They imply that 
the argument of the exponential is correct up to p, r independent corrections 
(which is in fact observed in the experiment, as Fig. 3 of ref. 22 shows). One 
should note that other errors may arise because of the approximate validity 
of our main chaotic assumption (which states that things go "as if" the 
system was Anosov): they may depend on D and we do not control them 
except for the fact that, if present, their relative value should tend to 0 
as D ~  ~ :  there may be (and very likely there are) cases in which the 
chaotic hypothesis is not reasonable for small N (e.g., systems like the 
Fermi-Pasta-Ulam chains), but it might be correct for large N. We also 
mention that for some systems with small D the chaotic hypothesis may be 
already regarded as valid (e.g., model 1 with N =  1 in ref. 6). In such cases 
care must be taken in not confusing D (in model 1 it is D = 2 N - 1 ,  in 
model 2 it is D = 2 N - 2 ,  and so on) with half the dimension of the full 
phase space ~ ,  as the latter might be so much larger (if N is small) that 
the difference in dimension can actually be observed in numerical 
experiments. 

The p independence of the coefficient of C in (7.2) is therefore a key 
test of the theory [and it should hold with corrections O(T -~ ]. 
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8. OUTLOOK 

We end with a number of remarks. 

1. The interest of our discussion in Section 7 is not, of course, the 
fluctuation theorem which is essentially proved there (for a formal proof 
see refs. 29 and 30), but in the clarification of the relevance of the proper- 
ties (A)-(C) mentioned in Section 2. Furthermore, it is interesting that our 
chaotic hypothesis in Section 2 does have some concrete and experimen- 
tally verifiable consequences (verified here in the case of model 2): such 
consequences have the remarkable feature of being predictions without ~'ee 
parameters, hinting that the hypothesis might have a quite general validity. 
One cannot be too demanding on the matter of mathematical rigor: one 
should not forget that the ergodic hypothesis is far from being proved 
either, particularly in the generality one would want. 

2. The fluctuation formula (7.3) holds also for the models 1 and 3-5 
because the fluctuation theorem applies to all such models (see remark 
following the theorem): but numerical experiments do not seem to exist yet. 

3. The pairing property (D) and the smooth distribution of the 
Lyapunov exponents (E) have been used here only to get some intuition and 
to visualize the hyperbolic nature of the attractor and the equality of the 
dimensions of the stable and unstable manifolds. It seems interesting to per- 
form numerical experiments to try to investigate better, at least in the systems 
that we are considering, if the density function foo (x) is really positive at x = 0, 
[see (E) Section 2], as the numerical results seem to suggest in some 
cases.(]2, ]3, ]4) Recent work ~ 16) provides the first rigorous results toward estab- 
lishing (E) and a discussion of the theoretical aspects of property (E). 

4. Note that the fluctuation theorem [-(7.3)] applied to model 5 leads 
to an interesting consequence on the large-deviations properties of the 
magnitude of the energy dissipation e in turbulent flows. In this case we 
take, for simplicity, the kinetic energy D,,kT(x) of the viscous modes to be 
a nonfluctuating quantity equal to DL, kT. Then the random variable p 
associated with r in the fluctuation theorem of 
Section 7 is just proportional to the average over a time interval t of the 
energy dissipation rate e. This is a variable that is assumed to be constant 
in the Kolmogorov-Obuchov theory: what we say here is that it is in fact 
a fluctuating quantity and we predict (on the basis of the fluctuation 
theorem of Section 7) that the time average ( e ) , ,  over a time interval t, of 
e(x), i.e., ( e ) , -  tD~.(e)+ p, is such that its probability distribution n,(p) 
satisfies the linear large-deviation law: 

I I 
D,tp(e} +/kT log L n,--A,,,,,,,,,,,,,,~J = 1 (8.1) 
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up to corrections O(t-l). If T =  T(x) has to be regarded as a fluctuating 
variable, then (8.1) must be regarded as a property of the fluctuations of 
the entropy production rate tr(x)=e(x)/kT(x) rather than of the energy 
dissipation (with some obvious modifications, e.g., ( e ) + / k T ~  ( e / k T ) + ) .  

5. Concerning the particularity of the Gaussian thermostat, we think 
seer33.34) that there should be, also in nonequilibrium, several physically 
equivalent ways of describing the same stationary distribution correspond- 
ing to different ~ and to different physical ways of reaching the stationary 
state, at least in the thermodynamic limit. Thus it may well be that the 
Gaussian thermostat turns out to be equivalent to other models of thermo- 
stats, which could be described by rather different attractors. For instance, 
a stochastic thermostat, in which a particle colliding with the wall is 
scattered with a Maxwellian distribution at a given temperature, will 
certainly be described by a statistics/~ which is absolutely continuous with 
respect to the Liouville distributions. 22 In the thermodynamic limit this 
might just give the same result as obtained with a statistics which, for 
finite N, is on a fractal attractor. This mechanism is like the one realized 
by the microcanonical and the canonical ensembles (the first is concen- 
trated on a set of configurations which has zero probability with respect to 
the second, as long as N < ~ ). This is clearly a question that requires further 
investigations. 

6. One can also regard the Gaussian thermostat as a device to 
eliminate some trivial Lyapunov exponents. For instance, in model 4 we 
could simply not introduce the Gaussian constraint that the total energy is 
constant (which led to the ~oPj terms): we believe that physically the 
system would then still behave in the same way, for  large N, L. But without 
such a constraint we could not assume the phase space to have 4 N - 3  
dimensions, because H would not be rigorously constant. We expect, 
however, that in such a case the energy H is approximately constant, in 
fact more and more so as L, N--, ~ with NL -2 =n constant. Thus the 
variability of H probably leads to a zero Lyapunov exponent, making the 
chaoticity assumption manifestly invalid. But this would be so only in a 
somewhat trivial way, as its violation is due to a zero Lyapunov exponent 
associated with a variable which is "almost" a constant of the motion. 
Hence it is natural to fix the value of the energy rigorously a priori by 
a constraint (realized via a minimum constraint principle, like Gauss' 
principle) and so" dispose of the extra 0 (or very close to 0) Lyapunov 
exponent, recovering then again a situation in which the system is strictly 
chaotic. Such a point of view can be extended to cover cases in which 

_,2 Note that a stochastic model of the thermostat is described by a stochastic differential 
equation so that our discussion does not apply without some major modification. 
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hyperbolicity is not  valid because of  the existence of  quasiexact conserva- 
tion rules. An example is in fact model 2 in which the variables _~j, pjj  can 
be replaced by yj, p~j, thus turning Px, Xx into variable quantities: their 
variability is, however, clearly due to the special (vertical) boundary  condi- 
tions used and it should therefore not matter whether they are kept 
rigorously constant or not, in the limit of  N, L ~ ~ .  The dynamics can be 
modified by turning such quantities into exact conservation laws and the 
new dynamics should be indistinguishable from the previous one in the 
thermodynamic limit. Another example is provided by the constraints 
imposed on model 3 to achieve that the horizontal momentum is conserved. 

7. Like for the ergodic hypothesis in equilibrium, the range of  
validity of  the chaotic hypothesis for nonequilibrium stationary states is 
not  known; the more complicated nature of  the latter states, maintained in 
the presence of external fields or  special boundary  conditions, makes this 
case even more difficult. 
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